Vergleich unterschiedlicher Flächeninanspruchnahmen nach Verkehrsarten (pro Person)~9 Minuten Lesezeit

Vergleich unterschiedlicher Flächeninanspruchnahmen nach Verkehrsarten (pro Person)<span class="wtr-time-wrap after-title">~<span class="wtr-time-number">9</span> Minuten Lesezeit</span>

Artikelaktualisierung Zukunft MobilitätDie Fläche einer Stadt ist von herausragender Bedeutung. Starr im Angebot und nicht erweiterbar muss sie möglichst gerecht zwischen den einzelnen Interessensgruppen aufgeteilt werden. Der Verkehr tritt häufig in Konkurrenz zu anderen Flächenansprüchen und verdrängt diese. Ziel sollte dabei immer eine ausreichende Berücksichtigung der einzelnen Interessen und die Maximierung der Lebensqualität der dort lebenden Menschen sein.

Die tatsächliche Beanspruchung der Innerortsstraßenflächen durch die einzelnen Verkehrsarten ist dabei recht unterschiedlich. Der benötigt mit Abstand die größten Flächen, der Fuß- und ist am flächeneffizientesten. Der öffentliche Personennahverkehr benötigt zwar ebenfalls relativ große Flächen – insbesondere bei unabhängigen und besonderen Bahnkörpern – ist aber aufgrund der hohen Massenleistungsfähigkeit und Fahrzeugkapazität auch bei einer Auslastung von nur 20 % vergleichsweise effizient. Steigt die Auslastung auf 80 Prozent oder höher, ist der mit Abstand das flächeneffizienteste Verkehrsmittel.

Insbesondere in einem verdichteten urbanen Raum ist die Flächeneffizienz von besonderer Bedeutung. Auf sie sollte bei Investitionsentscheidungen daher verstärkt geachtet werden.

Flächenbedarf verschiedener Verkehrsarten Pkw Bus ÖPNV Straßenbahn Radverkehr Fußverkehr

Vergleich unterschiedlicher Flächeninanspruchnahmen durch Pkw, , Straßenbahn, , und Fußgänger (pro Person), hochkant – Download in folgenden Breiten: 580 px, 1000px, 2000px, 3000 px – Grafik: Martin Randelhoff, www.zukunft-mobilitaet.net – CC BY 3.0

Kompakte Version:

Flächenbedarf Straßenverkehr MIV Pkw Radverkehr ÖPNV Bus Straßenbahn Stadtverkehr Infografik

Vergleich unterschiedlicher Flächeninanspruchnahmen durch Pkw, Bus, Straßenbahn, Stadtbahn, Radfahrer und Fußgänger (pro Person) – Download in folgenden Breiten: 580 px, 1000px, 2000px, 3000 px – Grafik: Martin Randelhoff, www.zukunft-mobilitaet.net – CC BY 3.0

Berechnungen und Annahmen

Im Folgenden ist die Berechnung der individuellen Flächenbedarfe beschrieben. Die Werte werden ohne individuellen Stellplatzbedarf ausgewiesen. Der Anhalteweg besteht aus dem Bremsweg und dem Reaktionsweg. Die Reaktionszeit beträgt typischerweise eine Sekunde. Als Minimalsicherheitsabstand s sollte der doppelte Wert, also tr = 2s, eingehalten werden. Um dies abzubilden, wurde jeweils der doppelte Reaktionsweg (8,3333 m bei 30 km/h bzw. bei 50 km/h) in die Rechnung einbezogen. Alle Werte beziehen sich auf den Bremsweg mit der jeweiligen Bremsverzögerung einer Betriebsbremsung (normale Bremsung).

Die Ermittlung des Bremsweges sBrems erfolgte für alle Verkehrsarten über die folgende Formel:

sBrems = (v02 – v2) / 2a

v0 = Anfangsgeschwindigkeit in m/s
v = Endgeschwindigkeit in m/s (= 0 m/s)
a = Bremsverzögerung in m/s2

Pkw

Die des Pkw-Verkehrs wurde für den ruhenden Verkehr (parkend) sowie für den mit 30 bzw. 50 km/h fahrenden Verkehr berechnet. Hierfür wurde für die 30 km/h schnelle Fahrt eine Wohnsammelstraße / Anliegerstraße mit einer Fahrstreifenbreite von 2,75 Meter zzgl. einem seitlichen Bewegungsspielraum von 0,25 Meter herangezogen (RASt 06, Entwurfssituation „Quartiersstraße“, ohne ÖPNV, 400 – 1000 Kfz). Die 50 km/h schnelle Fahrt erfolgt auf einer Hauptverkehrsstraße mit einer Fahrstreifenbreite von 3,25 Metern zzgl. 0,25 Metern seitlichen Bewegungsspielraum (RASt 06, Entwurfssituation „Verbindungsstraße“, Linienbusverkehr, 800 – 1800 Kfz). Dies ist der gängige Standardquerschnitt mit einer zulässigen Höchstbelastung von 15.000 Kfz/Tag (davon 300 Lkw/Tag)).

Die durchschnittliche Belegungslänge des fünf Personen fassenden Fahrzeugs wird mit 4,75 Meter angenommen (-> Pkw-Länge im Durchschnitt: 4,75 Meter)1. Der Besetzungsgrad beträgt im Schnitt 1,4 Personen / Pkw.

Der ruhende Verkehr (=parkend) benötigt bei Schräg- und Senkrechtaufstellung eine Parkstandsbreite von 2,50 m bei einem Seitenabstand der Fahrzeuge von 0,75 m (geht jeweils hälftig ein). Somit ergibt sich ein Flächenbedarf des ruhenden Verkehrs von 4,75 m Fahrzeuglänge * (2,50 m + (0,375 m * 2)) = 15,44 m2

Bei Längsaufstellung ist eine Parkstandsbreite von 2,3 Metern (ohne zusätzlichen Sicherheitsstreifen) ausreichend. Bei Längsaufstellung wird jedoch zusätzlich eine Fläche von 0,8 Meter Länge zum Rangieren benötigt. Es ergibt sich somit ein Flächenbedarf von (4,75 m Fahrzeuglänge + 0,8 m Bewegungsfläche) * 2,3 m Parkstandbreite = 12,77 m². Der Flächenbedarf des ruhenden Verkehrs ermittelt sich aus dem gewichteten Flächenbedarfen aus Längs- und Schräg- / Senkrechtaufstellung  und wird mit einem Flächenbedarf von 13,5 m² bewertet.

Die negative Bremsverzögung des Pkw wird mit 3,858 m/sangesetzt (Herleitung). Auf einen Flächenzuschlag für Reaktionszeit wird verzichtet, da alle Werte für einen normalen  mit normalem Verkehrsgeschehen berechnet sind.

(Länge Fahrzeug * Breite Verkehrsraum (Stand) + Länge Bremsweg * Breite Verkehrsraum + 2 * Länge Reaktionsweg * Breite Verkehrsraum) / Besetzungsgrad = Flächenbedarf

30 km/h:
(4,75 m * 3 m + 9 m * 3 m + 2 * 8,33 m * 3 m) /1,4 = 65,16 m²

50 km/h:
(4,75 m *3,5 m + 25 m * 3,5 m  + 2 * 13,89 m * 3,5 m) / 1,4 = 143,83 m²

Bus

Creative Commons Foto MB Mercedes Citaro Bus

Mercedes-Benz Citaro in Utrecht – Foto: Roel Hemkes @ Flickr CC BY 2.0

Die negative Bremsverzögerung eines Busses wird mit 2,5 m/s2 angenommen. Dies entspricht der normalen Bremsverzögerung eines Busses während einer Stadtfahrt. Ein 12,135 Meter langer Citaro von Mercedes Benz hat  eine Fahrgastkapazität von 105 (31 Sitzplätze und 74 Stehplätze). Die benötigte Straßenbreite des 2,55 Meter breiten Busses beträgt nach RASt 06 3,25 Meter zuzüglich beidseitig 0,5 Meter zur Ermittlung des Lichtraums (Breite = 4,25 Meter).

(Länge Fahrzeug * Breite Verkehrsraum (Stand) + Länge Bremsweg * Breite Verkehrsraum + 2 * Länge Reaktionsweg * Breite Verkehrsraum) / (Kapazität * Auslastung) = Flächenbedarf je Fahrgast

Im Stand mit 20% Auslastung:
(12,135 m * 4,25 m) /(105*0,2) = 2,46 m²

30 km/h mit 20 % Auslastung:
(12,135 m * 4,25 m + 13,89 m * 4,25 m + 2 * 8,33 m * 4,25 m) /(105*0,2) = 8,64 m²

50 km/h mit 20 % Auslastung:
(12,135 m *4,25 m + 38,58 m * 4,25 m + 2 * 13,89 m * 4,25 m) / (105*0,2) = 15,89 m²

Im Stand mit 40% Auslastung:
(12,135 m * 4,25 m) /(105*0,4) = 1,23 m²

30 km/h mit 40 % Auslastung:
(12,135 m * 4,75 m + 13,89 m * 4,25 m + 2 * 8,33 m * 4,25 m) /(105*0,4) = 4,46 m²

50 km/h mit 40 % Auslastung:
(12,135 m *4,75 m + 38,58 m * 4,25 m + 2 * 13,89 m * 4,25 m) / (105*0,4) = 8,09 m²

Straßenbahn, Stadtbahn und U-Bahn

Bei spurgeführten Fahrzeugen wurden ebenfalls keine zusätzlichen Zeitbedarfe für den Reaktionsweg addiert, da Stadt- und U-Bahnen auf eigenem vom restlichen Verkehr getrennten Bahnkörpern sowie im sogenannten Blockabstand verkehren. Zudem wurde jeweils die mittlere Bremsverzögerung einer Betriebsbremsung angesetzt. Die genannten Werte werden bei einer Gefahrenbremsung bei Weitem überschritten und liegen bei 2,75 – 3 m/s2. In den Bremswegen im Rahmen einer Betriebsbremsung sind folglich ausreichende Reserven für den Reaktionsweg im Falle einer Gefahrenbremsung vorhanden.

Straßenbahn

DVB Straßenbahn NGT D12DD

NGT D12DD der Dresdner Verkehrsbetriebe AG (DVB AG) – Foto: Matthew Black @ FlickrCC BY-SA 2.0

Die Dresdner Straßenbahn NGT D12DD bremst bei einer Betriebsbremsung mit einer Bremsverzögerung von 1,35 m /s2 (vollbesetzt). Die Straßenbahn hat eine Länge über Kupplung von 45.090 mm und eine Breite von 2.300 mm. In ihr finden 260 Fahrgäste Platz (107 Sitzplätze und 153 Stehplätze). Der Triebwagen zählt zum Typ „Flexity Classic XXL“ und wurde von Transportation im Werk Bautzen hergestellt.

Der Bremsweg aus 30 km/h beträgt 25,72 Meter und aus 50 km/h 71,44 Meter.

Grundmaß für den Verkehrsraum einer Straßenbahn mit maximaler Fahrzeugbreite (W = 2,65 m) nach RASt06 ist eine Breite von 3,25 Metern. Da nicht die Breite der Straßenbahn, sondern die Breite des benötigten Verkehrsraum maßgeblich sind, ergeben sich bei 20 % Auslastung über den Tag folgende Werte:

(Länge Fahrzeug * Breite Verkehrsraum (Stand) + Länge Bremsweg * Breite Verkehrsraum + 2 * Länge Reaktionsweg * Breite Verkehrsraum) / (Kapazität * Auslastung) = Flächenbedarf je Fahrgast

Im Stand: 45,09 m * 3,25 m / (260 * 0,2) = 2,82 m2

Bei 30 km/h:
(45,09 m * 3,25 m + 25,72 m * 3,25 m + 2 * 8,33 m * 3,25 m) / (260 * 0,2) = 5,47 m2

Bei 50 km/h:
(45,09 m * 3,25 m + 71,44 m * 3,25 m + 2 * 13,89 m * 3,25 m) / (260 * 0,2) = 9,02 m2

Stadtbahn

Stadtbahn Stuttgart Serie DT 8.11

Stadtbahn Serie DT 8.11 an der Haltestelle Ruhbank – Foto: gemeinfrei

Die Stadtbahn SSB DT 8.11 der Stuttgarter Straßenbahnen (SSB) mit einer Länge von 38,56 Meter und einer Breite von 2,65 Meter. Die Bremsverzögerung beträgt 1,8 m /s2. Der Stadtwahnwagen bietet 254 Fahrgästen Platz (108 Sitzplätze und 146 Stehplätze).

Die Stadtbahn mit einer Fahrzeugbreite von 2,65 Metern verkehrt im Beispiel auf einem besonderen bzw. unabhängigen Bahnkörper in Mittellage und Sicherheitsraum im Seitenbereich von 0,70 Meter zur straßenzugewandten Seite und 0,35 Meter im Gleiszwischenraum. Die Breite des Verkehrsraums beträgt folglich 3,7 Meter.

Der Bremsweg aus 30 km/h beträgt 19,29 Meter und aus 50 km/h 53,58 Meter.

(Länge Fahrzeug * Breite Verkehrsraum (Stand) + Länge Bremsweg * Breite Verkehrsraum + 2 * Länge Reaktionsweg * Breite Verkehrsraum) / (Kapazität * Auslastung) = Flächenbedarf je Fahrgast

Im Stand:
38,56 m * 3,7 m / (254 * 0,2) = 2,81 m2

Bei 30 km/h:
(38,56 m * 3,7 m + 19,29 m * 3,7 m + 2 * 8,33 m * 3,7 m) / (254 * 0,2) = 5,43 m2

Bei 50 km/h:
(38,56 m * 3,7 m + 53,58 m * 3,7 m + 2 * 13,89 m * 3,7 m) / (254 * 0,2) = 8,73 m2

Ein Fahrrad hat in unserem Beispiel eine Länge von 1,8 Meter und eine Breite von 0,65 Meter. Somit ergibt sich eine Grundfläche von 1,2 m².

Ein Radfahrer nimmt nach RASt 06 eine Breite von 1 Meter zzgl. variable Sicherheitsabstände ein. Diese unterscheiden sich je nach Situation: 0,75 Meter von parkenden Fahrzeugen in Längsaufstellung, 0,5 Meter vom Fahrbahnrand und 0,25 Meter von parkenden Fahrzeugen in Schräg- und Senkrechtaufstellung, von Verkehrsräumen des Fußgängerverkehrs und von Gebäuden, Verkehrseinrichtungen, usw. Um den verschiedenen Verkehrssituationen gerecht zu werden, wird die Breite des fahrenden Radverkehrs mit 1,5 Meter angenommen. Im Stand wird eine Breite von 0,65 Metern angesetzt, da Sicherheitszuschläge entfallen und stehende Radfahrer aufgrund der fehlenden Fahrbewegungen (insbesondere des Oberkörpers) kompakter sind. Hier definiert vor allem die Schulter- bzw. Lenkerbreite die Breite.

Die Bremsverzögerung eines Fahrrads besteht aus den kombinierten Bremsverzögerungen von Vorder- und Hinterbremse. Laut StVO muss ein Fahrrad eine Bremsverzögerung von 4 m/s² besitzen. Da hohe Bremsverzögerungen jedoch nur schwer zu beherrschen sind (Blockade des Hinterrads und Kippbewegung bei zu starker Bremsung mit der Vorderbremse), wird eine mittlere Bremsverzögerung von 3,5 m/s² angenommen.

Länge Fahrzeug * Breite Verkehrsraum (Stand) + Länge Bremsweg * Breite Verkehrsraum + 2 * Länge Reaktionsweg * Breite Verkehrsraum) = Flächenbedarf je Fahrradfahrer

Bei 30 km/h:
1,8 m *0,65 m + 9,92 m * 1,5 m + 2 * 8,33 m * 1,5 m = 41,04 m²

U-Bahn

MVG-aureihe C Creative Cmmons Metro Munich

Baureihe C der Münchner U-Bahn – Foto: Max Talbot-Minkin @ Flickr – CC BY 2.0

Auch wenn eine U-Bahn kein straßengebundenes Verkehrsmittel ist und nur bei oberirdisch geführten Streckenteilen einen realen Flächenbedarf hat, der Vollständigkeit halber die errechneten Werte:

Die U-Bahn der Münchner Verkehrsgesellschaft MVG der Baureihe C weist eine mittlere Bremsverzögerung von 1,2 m/s2 auf.

Die 2.900 mm breite und 113.980 mm lange U-Bahn verkehrt in einem Tunnel mit einem Innendurchmesser von 6,30 Meter. Das Lichtraumprofil wird in der Breite mit 5,0 Metern angenommen. Der U-Bahn-Zug bietet 252 Sitzplätze und 666 Stehplätze. Insgesamt können somit 918 Personen mit einem Zug befördert werden.

Der Bremsweg aus 30 km/h beträgt 28,94 Meter und aus 50 km/h 80,38 Meter.

(Länge Fahrzeug * Breite Verkehrsraum (Stand) + Länge Bremsweg * Breite Verkehrsraum  + 2 * Länge Reaktionsweg * Breite Verkehrsraum) / (Kapazität * Auslastung) = Flächenbedarf je Fahrgast

Im Stand:
113,98 m * 5,0 m / (918 * 0,2) = 3,10 m2

Bei 30 km/h:
(113,98 m * 5,0 m + 28,94 m * 5,0 m + 8,33 m * 5 m) / (918 * 0,2) = 4,12 m2

Bei 50 km/h:
(113,98 m * 5,0 m + 80,38 m * 5,0 m + 2 * 13,89 m * 5 m) / (918 * 0,2) = 6,05 m2

Aktualisierung – 21.08.2014

Aufgrund eines Fehlers meinerseits waren eine frühere Version der beiden Grafiken sowie die hier kommunizierten Flächenwerte fehlerhaft. Die Fehler wurden entsprechend korrigiert. Details können Sie hier nachlesen.

Aktualisierung – 05.02.2015

Defekte Verlinkungen der Bilder repariert.

  1. Dieter Lohse,Werner Schnabel (2011): Grundlagen der Straßenverkehrstechnik und der : Band 1, S. 488

Verfasst von

Martin Randelhoff

Herausgeber Zukunft Mobilität.
Studium der Raumplanung an der TU Dortmund, Studium der Verkehrswirtschaft an der TU Dresden.
Ist interessiert an innovativen Konzepten zum Lösen der Herausforderungen von morgen insbesondere in den Bereichen urbane Mobilität, Verkehr im ländlichen Raum, Wirkung autonomer Fahrzeugsysteme und nachhaltige Verkehrskonzepte.

Hinterlasse einen Kommentar

Benachrichtige mich zu:
avatar
 
Bild(er) hinzufügen
 
 
 
Sortiert nach:   neuste | älteste | beste Bewertung
wpDiscuz

Jetzt abonnieren!

Twitter

Auszeichnungen

Grimme Online Award Preisträger 2012

Zukunft Mobilität hat den Grimme Online Award 2012 in der Kategorie Information erhalten. Ich möchte mich bei all meinen Lesern für die Unterstützung bedanken!

PUNKT Preisträger 2012

Zukunft Mobilität hat den PUNKT 2012 der Deutschen Akademie der Technikwissenschaften (acatech) in der Kategorie "Multimedia" gewonnen.

Logo VDV Verband Deutscher Verkehrsunternehmen

Der Verband Deutscher Verkehrsunternehmen e.V. (VDV) hat mich im Rahmen der VDV-Jahrestagung 2013 in Mainz als “Talent im ÖPNV” des Jahres 2013 ausgezeichnet. Der VDV vertritt rund 600 Unternehmen des Öffentlichen Personennahverkehrs, des Schienenpersonennahverkehrs, des Schienengüterverkehrs, der Personenfernverkehrs sowie Verbund- und Aufgabenträger-Organisationen.

Lizenz

Zukunft Mobilität Creative Commons

Die Inhalte dieses Artikels sind - soweit nicht anders angegeben - unter CC BY-SA 3.0 de lizensiert. Grafiken sind von dieser Lizenz aus Vereinfachungs- und Schutzgründen ausgenommen (Anwendung aufgrund der Verwendung von Grafiken / Bildern mit unterschiedlichen Lizenzen zu kompliziert) außer die CC-Lizenz ist ausdrücklich genannt.

Weitere Informationen
Share This